Exercice 3 On considère l'expression A(x) = (x + 1)(x + 3) - (x + 1)(2x + 5) 1. Développer et réduire A(x). 2. Factoriser A(x). 3. Montrer que lorsqu'on remplac
Question
On considère l'expression
A(x) = (x + 1)(x + 3) - (x + 1)(2x + 5)
1. Développer et réduire A(x).
2. Factoriser A(x).
3. Montrer que lorsqu'on remplace x par (-2) dans l'expression A(x) on obtient 0.
Vous pouvez m'aider s'il vous plaît merci beaucoup
1 Réponse
-
1. Réponse iledemeraude
Réponse :
1. A(x) = -x²-3x-2
2. A(x) = -(x+1)(x+2)
3. A(-2) = 0
Explications étape par étape :
1. A(x) = (x+1)(x+3)-(x+1)(2x+5)
A(x) = x*x+x*3+1*x+1*3-(x*2x+x*5+1*2x+1*5)
A(x) = x²+3x+x+3-(2x²+5x+2x+5)
A(x) = x²+(3+1)x+3-(2x²+(5+2)x+5)
A(x) = x²+4x+3-(2x²+7x+5)
A(x) = x²+4x+3-2x²-7x-5
A(x) = x²-2x²+4x-7x+3-5
A(x) = (1-2)x²+(4-7)x+(3-5)
A(x) = -1x²+(-3)x+(-2)
A(x) = -x²-3x-2
2. A(x) = (x+1)(x+3)-(x+1)(2x+5)
A(x) = (x+1)[(x+3)-(2x+5)]
A(x) = (x+1)(x+3-2x-5)
A(x) = (x+1)(x-2x+3-5)
A(x) = (x+1)((1-2)x+(3-5))
A(x) = (x+1)((-1)x+(-2))
A(x) = (x+1)(-1x-2)
A(x) = (x+1)(-1*x+(-1)*2)
A(x) = (x+1)(-1)(x+2)
A(x) = (-1)(x+1)(x+2)
A(x) = -(x+1)(x+2)
3. Utilisons la forme factorisée de A(x) lorsque x=-2
A(x) = -(x+1)(x+2)
A(-2) = -(-2+1)(-2+2)
A(-2) = -(-1)*(0)
A(-2) = 1*0
A(-2) = 0