Mathématiques

Question

Bonjour,

Pouvez vous m'aider à réaliser cet exercice de maths sur les dérivées et etudes des fonctions exponentielles.

Merci d'avance.
Bonjour, Pouvez vous m'aider à réaliser cet exercice de maths sur les dérivées et etudes des fonctions exponentielles. Merci d'avance.

1 Réponse

  • Réponse :

    1) f(x) = (x² - 2 x)eˣ

    f '(x) = 2 xeˣ + (x² - 2 x)eˣ = (2 x + x² - 2 x)eˣ  = x²eˣ   ;  eˣ > 0  et  x² ≥ 0

    donc  f '(x) ≥ 0  ⇒  f est croissante  sur R

    2) f(x) = 1/x)eˣ    f est définie sur R*

    f '(x) = (uv)' = u'v + v'u

    u(x) = 1/x   ⇒ u'(x) = - 1/x²

    v(x) = eˣ   ⇒ v'(x) = eˣ

    f '(x) = - 1/x²)eˣ + 1/x)eˣ = (- 1/x² + 1/x)eˣ = (- 1 + x)/x²)eˣ   or eˣ > 0 et x² > 0

    donc le signe de f '(x) dépend du signe de  - 1 + x

    - 1 + x ≤ 0  sur l'intervalle ]- ∞ ; 1]  ⇒ f est décroissante sur ]- ∞ ; 1]

    - 1 + x ≥  0  /          /           [1 ; + ∞[  ⇒ f est croissante sur [1 ; + ∞[

    3) f(x) = (eˣ - 1)/(2eˣ + 1)    f est définie sur R

    f '(x) = (u/v)' = (u'v - v'u)/v²

    u(x) = eˣ - 1   ⇒ u'(x) = eˣ

    v(x) = 2eˣ + 1  ⇒ v '(x) = 2eˣ

    f '(x) = (eˣ(2eˣ + 1) - 2eˣ(eˣ - 1))/(2eˣ + 1)²

           = (2e²ˣ + eˣ - 2e²ˣ + 2eˣ)/(2eˣ + 1)²

           = 3eˣ/(2eˣ + 1)²      or   (2eˣ + 1)² > 0  et  eˣ > 0  ;  3 > 0  donc 3eˣ > 0

    donc   3eˣ/(2eˣ + 1)²  > 0   donc f '(x) > 0  ⇒ f est strictement croissante sur R

    4) f(x) = eˣ/( eˣ - x)   il faut que  eˣ - x ≠ 0  ⇔   eˣ  ≠ x  il faut que x > 0

    f '(x) = (u/v)' = (u'v - v'u)/v²

    u(x) =  eˣ   ⇒ u'(x) =  eˣ

    v(x) =  eˣ - x  ⇒ v'(x) =  eˣ  - 1

    f '(x) = (eˣ ( eˣ - x) - (eˣ - 1)eˣ)/(eˣ - x)²

           = (e²ˣ - x eˣ - e²ˣ +  eˣ)/(eˣ - x)²

           = (- x eˣ  +  eˣ)/( eˣ  - x)²

           =  eˣ(- x + 1)/( eˣ - x)²    or  ( eˣ - x)² > 0  et   eˣ > 0

    donc le signe de f '(x) est du signe de - x + 1

    - x + 1 ≥ 0  sur ]- ∞ ; 1] ⇒ f est croissante

    - x + 1 ≤ 0   /    [1 ; + ∞[ ⇒ f est décroissante

    5) f(x) = x² - 2(x - 1)eˣ

    f '(x) = 2 x - (2eˣ + 2(x - 1)eˣ)

           = 2 x - 2eˣ - 2xeˣ + 2eˣ

           = 2 x - 2xeˣ

           = 2x(1 - eˣ)    

         x      - ∞                  0                 + ∞

       2 x                 -          0        +

      1 - eˣ               +          0        -

        P                   -           0        -

    donc  f est décroissante sur R

    Explications étape par étape :